Oilseed and Fiber Crops News

Growing Industrial Hemp in Oregon

Senate Bill 676 passed by the Oregon legislature in 2009 allows for the production of industrial hemp. But in the years since, farmers have been hesitant to begin growing for fear that they'd be prosecuted by the Drug Enforcement Administration for possession of a schedule I controlled substance — since under federal law, hemp is in the same category as marijuana.

Read more and listen at OPB.org

Industrial hemp in Oregon: State officials drafting rules for hemp production

Oregon agriculture officials on Tuesday said they hope to have rules in place for the possibility of producing industrial hemp by the spring planting season.

The Oregon Department of Agriculture has assembled a committee of policy officials and agriculture experts, including Russ Karow, head of the Oregon State University crop and soil science program, to draft rules for industrial hemp production. Jim Cramer, director of the market access and certification program area of the Department of Agriculture, said the agency’s focus is crafting “robust” rules for hemp. 

Read more in the Oregonian »

OSU professor warns against excess canola production

An Oregon State University weed scientist said in a legislative hearing March 19 to expect an increase in disease and pest pressure if growers increase production of canola and other brassica seed crops in the Willamette Valley.

"I think if we increase the brassica seed production in the Willamette Valley, using canola or any of the other brassica crops, we will see an increase in diseases and pests," said Carol Mallory-Smith, a professor in the Department of Crop and Soil Sciences at OSU. "It is very, very likely."

he issue of whether canola production in the valley will contribute to an increase in insect, weed and disease pressure is among issues state agriculture officials weighed before deciding recently to allow limited production here.

Read more in the Capital Press »

Canola in the Valley

originally published in Oregon's Agricultural Progress. By Gail Wells

Some scientists might relish seeing their research at the center of a vigorous policy dispute, but Carol Mallory-Smith is not one of them. “I try to stick to the science and stay out of the spotlight,” she says.

Mallory-Smith is a weed scientist with Oregon State University’s crop and soil science department. She is fascinated with how plants hybridize, how they spread their genes and cross-pollinate.

Such study might suggest tranquil scenes of birds and bees and a gentle breeze. But, no. Mallory-Smith’s interest in cross-pollination has led her to investigate the flow of genes between genetically modified crops and their conventional counterparts. And that has propelled her into one of today’s hottest environmental controversies.

“I didn’t intend to get into these political issues,” she says. But as a scientist at a public land grant university, her work is used by policymakers to shed light on such heated public debates.

Mallory-Smith is a careful and precise speaker, neither overstating the science nor backing away from its implications. In a situation where feelings run high, she is regarded as an unbiased spokesperson for the research—a straight shooter, neither a demonizer nor a booster of genetic modification.

But sometimes the grenades of controversy hit uncomfortably close to home. Currently, research by Mallory-Smith and her OSU colleagues has become Exhibit A in an agricultural tempest raging in OSU’s backyard. The dispute is pitting specialty vegetable and vegetable-seed farmers in Oregon’s Willamette Valley against grass-seed farmers who want to grow canola, a rotation crop that can yield a profit as a source of both food and fuel.

Canola is a member of the sprawling Brassica family, which includes good-for-you vegetables like cabbage, cauliflower, kale, and broccoli. Canola can cross-pollinate with some of these crops and with their weedy wild relatives. That worries some vegetable-seed growers who must assure the genetic purity of their seeds. And because the Oregon Department of Agriculture makes no distinction between genetically modified and conventional canola (both are legal crops) the valley’s organic farmers worry that they won’t be able to sell their products as organic if they’re cross-pollinated with genetically modified canola.

The Oregon Department of Agriculture permits canola to be grown in three areas east of the Cascades, and, since 2009, in small patches on the valley’s fringe. At the moment, no canola is grown in the heart of the valley except by special research permit. The state’s restrictions on canola date from 2005, when OSU scientists, including Mallory-Smith, reported many scientific unknowns and potentially high risk of allowing canola into a neighborhood of high-value specialty seed farms.

The state is now proposing a changed rule that would allow limited acreage in the valley to be planted in canola under specific conditions. Although this is only a proposed rule, to be decided in 2013, it worries specialty seed farmers. Canola is “an aggressive and persistent weed that can and will outcross” with related Brassicas, says Nick Tichinin, a Polk County farmer whose company, Universal Seed Co., supplies vegetable seed to a worldwide market of vegetable producers and home gardeners. “We’re introducing a new pest into a currently closed system.”

The Willamette Valley is a great place to grow seeds—wet, mild winters encourage plant growth while dry, warm summers help set seed. One of just a handful of places in the world with a similar climate, the valley produces much of the world’s Brassica seeds, accounting for $25 million annually. Unlike canola, specialty seed crops are painstakingly bred and tended, says Tichinin. “We are part of a unique, little-known, essential, and now jeopardized, worldwide seed supply chain.”

Bringing a rampant Brassica like canola into the valley, says Tichinin, would risk contaminating their crops— an entire seed lot will be rejected if a tiny proportion is not the true variety. And contamination with engineered genes could drive organic growers out of business, he says.

On the other side of the debate are the grass-seed farmers, who are looking for a good rotation crop. “Canola is fantastic for rotation,” says Kathy Hadley, a Polk County farmer and member of the Willamette Valley Oilseed Association. “It does all the things a rotation crop is supposed to do: utilizes different nutrients in the soil, reduces disease pressure on your main crop, and allows you to use a different chemical regime to control weeds. It has a taproot that breaks up the soil pan and provides a good soil structure for no-till agriculture.”

And, unlike most other rotation crops, canola is profitable. It can be made into both a food-grade oil for cooking and fuel for biodiesel. Oregon law requires that diesel fuel contain 5 percent biodiesel. And governor John Kitzhaber’s 2012 energy plan calls for replacing 20 percent of Oregon’s fleet vehicles with cars and trucks that run on alternative fuels, including biodiesel.

Is Oregon’s agricultural Eden big enough for both canola fields and specialty-seed operations? How can science shed light on this heated debate?

“The biology of the plant makes a big difference,” says Mallory-Smith. “Is it cross-pollinated or self-pollinated? If cross-pollinated, is the pollen carried by wind or insects? And if a cross occurs, how viable are the hybrid offspring?”

Mallory-Smith and her OSU colleagues are working on questions like these. When the precautionary no-canola boundary was established in 2005, the Oregon Department of Agriculture (ODA) relied on the scientific advice of OSU researchers. Preparing to revisit the issue in 2010, ODA commissioned a full study from a team headed by Russ Karow, head of OSU’s crop and soil science department.

In addition to reviewing existing studies on canola, the team, which included Mallory-Smith, conducted field trials in the valley under a special research permit. These trials included plantings on Kathy Hadley’s farm in 2008 and 2009.

Pests and diseases common to many Brassica varieties were present in the trials. And the researchers found that canola seeds stay viable in the soil for two or three years, raising the risk that canola could become a weed in subsequent crops or along roadsides and waterways.

As with many scientific studies, the team noted that the research “resulted in as many questions as answers.” Confirming the presence of insects and diseases led to the question of how these might spread from field to field and how long pests might persist. Confirming that the seed could stay viable for years led to the question of how farmers or regulators might control maverick canola plants along roadsides and field edges. And because plants have to flower at the same time to cross-pollinate, the researchers questioned if using plants with mismatched flowering cycles might limit cross-pollination.

“Given the potential risk,” the researchers concluded, “precaution suggests not allowing canola production at this time.” ODA opted to keep the 2009 precautionary rule, but reopened the case in 2012.

The researchers continued their work. In a report released in 2012, Mallory-Smith and OSU colleagues James Myers and Michael Quinn addressed additional risks posed by genetically engineered canola. They researched pollen movement and concluded that pollen from a large field of canola could overwhelm a small planting of, say, Siberian kale, which is highly compatible with canola.

They looked at studies from other researchers on transport of seed by humans, birds, rodents, and insects, and concluded that canola could become a persistent weed problem in a subsequent crop, in areas adjacent to fields, and along roadsides. And they cited a Canadian analysis of canola seed that had been certified as non-transgenic, but found that 24 of the 25 tested lots contained transgenic seeds.

Caution, the researchers conclude, is still the watchword. “This study provides strong evidence that it will be difficult to prevent the introduction of transgenic canola into an area even if there [were] a provision to only allow conventional canola production in the Willamette Valley.”

The canola debate moved to the state capitol in September of this year, when farmers on both sides made their case. Science can do much to shed light on such controversial issues, but science cannot make the decision. That is the responsibility of the policymaker.

It is not easy to stand by and watch warring factions argue about your work. But having contributed the best science she can, Mallory-Smith stresses that the outcome is not up to her. “The decision-makers are listening to the science, and they understand the science,” she says. “They have to make a regulatory decision based on what they see as the greater good.”

Plan allows canola in Willamette Valley

The state Department of Agriculture is pressing ahead with its plan to allow canola production in the Willamette Valley, but the agency now proposes sharply limiting the amount that can be grown.

Clean-energy advocates and some farmers are eager to expand production of canola, but it has been banned from the Willamette Valley for years. The yellow-flowering plant produces seeds that can be pressed for oil to use in renewable fuels, but they also bring new pests and can cross-pollinate with sensitive plants that produce organic vegetable seeds.

The Agriculture Department sparked controversy last year when it cut in half the region where farmers are prohibited from growing canola — a plan that was ultimately halted by an appeals court.

Read more in the Register-Guard »

Fight Over Canola Pits Biofuels Vs. Organics

Wet winters and cool, dry summers make Oregon's Willamette Valley one of the best places on the globe to produce seeds for organic broccoli, cabbage, cauliflower, Brussels sprouts and a variety of other vegetables known as brassicas.

That means the fields south of Portland are also an ideal place to grow canola, another brassica whose seeds can be pressed to extract oil for food or renewable fuel.

Read more at ABC News >