Bacterial and archaeal amoA gene distribution covaries with soil nitrification properties across a range of land uses

Lydia H. Zeglin,* Anne E. Taylor, David D. Myrold and Peter J. Bottomley

Departments of 1Crop and Soil Science and 2Microbiology, Oregon State University, Corvallis, OR, USA.

Summary

Ammonia-oxidizing bacteria and ammonia-oxidizing archaea are commonly found together in soils, yet the factors influencing their relative distribution and activity remain unclear. We examined archaeal and bacterial amoA gene distribution, and used a novel bioassay to assess archaeal and bacterial contributions to nitrification potentials in soils spanning a range of land uses (forest, pasture, cultivated and long-term fallowed cropland) along a 10 km transect. The assay, which quantifies the extent to which acetylene-inactivated soil nitrification potential recovers (RNP) in the presence of bacterial protein synthesis inhibitors, indicated a significant archaeal contribution to the nitrification potentials of the pasture and long-term fallowed soils. Archaeal amoA gene abundance did not vary significantly among the soils, but bacterial amoA gene abundance did, resulting in archaeal : bacterial amoA abundance ratios ranging from 1.1 ± 0.8 in cultivated soils to 396 ± 176 in pasture soils. Both archaeal and bacterial amoA gene compositions were heterogeneous across the landscape, but differed in their patterns of variability. Archaeal amoA gene distributions were distinct among each of the three main land-use types: forest, pasture and cropland soils. In contrast, bacterial amoA gene composition was distinct in forest and in cultivated cropland, while pasture and long-term fallowed cropland soils were similar. In both pasture and long-term fallowed cropland soils, one phylotype of Nitrosospira cluster 3a was highly abundant. This distinct bacterial amoA gene fingerprint correlated with significant contributions of archaea to RNP to both soils, despite differences in archaeal amoA gene composition between the pasture and fallowed soils. This observation suggests that the factors driving the development of ammonia-oxidizing bacteria community composition might influence the extent of archaeal contribution to soil nitrification.

Introduction

Nitrification, the microbially mediated transformation of ammonium (NH₄⁺) to nitrate (NO₃⁻), is one of the most important components of the nitrogen (N) cycle. The rate-limiting step in this process is the oxidation of ammonia to nitrite (NO₂⁻). Ammonia oxidation by bacteria has been studied for many years, and takes place throughout terrestrial and aquatic environments. Recently, thaumarchaeal isolates from marine (Candidatus Nitrosopumilus maritimus) and soil (Candidatus Nitrosopumilus viennensis) have been shown to grow lithotrophically via ammonia oxidation in culture (Konneke et al., 2005; Tourn et al., 2011). Furthermore, several culture-independent soil studies have detected expression of the archaeal ammonia monoxygenase gene (amoA), suggesting that soil-borne archaea are capable of ammonia oxidation in situ (Treusch et al., 2005; Leininger et al., 2006; Chen et al., 2008; Nicol et al., 2008; Mertens et al., 2009). Whereas amoA genes from ammonia-oxidizing thaumarchaea (AOA) tend to be numerically dominant over ammonia-oxidizing bacteria (AOB) in marine environments (Santoro et al., 2010), soil environments are more variable with the ratio between archaeal and bacterial amoA genes ranging between 1 and 1000 (Francis et al., 2005; Beman and Francis, 2006; Leininger et al., 2006; Coolen et al., 2007; He et al., 2007; Adair and Schwartz, 2008; Boyle-Yarwood et al., 2008). Several studies have shown that population size and community structure of archaeal, as well as bacterial, amoA genes are related to environmental conditions such as pH, salinity or N fertilization history (He et al., 2007; Hansel et al., 2008; Mosier and Francis, 2008; Nicol et al., 2008; Shen et al., 2008; Hallin et al., 2009; Schauss et al., 2009); however, to our knowledge there have been no direct comparisons of both AOA and AOB amoA gene community composition, population...
sizes and nitrification activities in different soil types with varied land-use histories.

The factors affecting AOA and AOB distribution and their activities in the environment may be different (Erguder et al., 2009). Generally, Nitrosospira spp. are the most common type of AOB found in soils. Vegetation type (Mintie et al., 2003; Hawkes et al., 2005) or N fertilization level (Avrahami et al., 2003; Horz et al., 2004) can affect the relative abundance of specific Nitrosospira taxa, and distinct Nitrosospira clades have been associated with soils expressing different nitrification properties (Webster et al., 2005). Archaeal amoA genes exhibit phylogenetic structure definable by predominant habitat type ('soil' or 'marine') (Prosser and Nicol, 2008), and soil AOA abundance and activity has been shown to depend on pH and ammonium availability (Nicol et al., 2008; Di et al., 2010). In addition to pH, AOA community structure may also vary with fertilization practice (He et al., 2007; Tourna et al., 2008) or vegetation type (Boyle-Yarwood et al., 2008; Chen et al., 2008). Although it is now clear that some members of the Group 1.1a Thaumarchaea can oxidize ammonia, fix CO₂, and grow in soil (Offre et al., 2009; Zhang et al., 2010; Verhamme et al., 2011), soil-borne AOB usually proliferate more extensively than AOA in response to large additions of exogenous ammonia or urea-N fertilizer (Di et al., 2009; Jia and Conrad, 2009; Mertens et al., 2009; Pratscher et al., 2011; Verhamme et al., 2011). Based on a novel assay that measures the extent of recovery of nitrification potential (RNP) over a 24–48 h incubation in the presence of bacterial protein synthesis inhibitors after irreversibly inactivating ammonia monooxygenase with acetylene, AOB and AOA were implicated as the dominant contributors to the nitrification potential of cropped and pasture soils respectively (Taylor et al., 2010). However, it remains unknown whether population sizes, community composition or edaphic properties control the relative contribution of AOA or AOB to nitrification activity. In order to understand the controls over contributions of AOA and AOB to in situ soil nitrification rates, it is necessary to identify factors that link diversity, abundance and activity of the AOA and AOB that coexist in field soils.

In this study, we investigated archaeal and bacterial amoA gene abundance (using Q-PCR), community composition (using T-RFLP and clone libraries), and nitrification activity in soils representing a range of land-use types (coniferous and actinorhizal forest, improved and unimproved pasture, actively cultivated and long-term fallowed cropland) from the Willamette Valley, Oregon, USA. Our goal was to identify patterns of coexistence of archaeal and bacterial amoA genes in these soils, and to determine if any relationship existed between these patterns and the relative contributions of archaea and bacteria to the RNP. A better understanding of the field distribution of amoA genes and nitrification activity in relation to varied soil management strategies will help to predict the relative importance of bacterial and archaeal nitrification across the landscape.

Results and discussion

Soil properties, nitrification potential and amoA gene abundance

Soils spanned a narrow pH range (6.0–6.7), a fourfold range in total C, a twofold range in total N and a sixfold range in net N mineralization rates (Table 1). Nitrification potential rates (NP) were high and variable, and were highest in the annually urea-N-fertilized cropped soils and lowest in the pasture soils, although this difference was

<table>
<thead>
<tr>
<th>pH</th>
<th>Total C (%)</th>
<th>Total N (µg N g⁻¹)</th>
<th>Nmin</th>
<th>NP soil d⁻¹</th>
<th>RNP-kan (ratio)</th>
<th>Arch-amoA †</th>
<th>Bact-amoA †</th>
<th>Arch : Bact-amoA †</th>
<th>Arch-amoA T-RFs</th>
<th>Bact-amoA T-RFs</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-F</td>
<td>6.5</td>
<td>5.3⁺</td>
<td>0.27⁻⁰⁶⁺</td>
<td>23.0 ¹</td>
<td>2.2⁺</td>
<td>5.8</td>
<td>9.32</td>
<td>0.51abc</td>
<td>13.7a</td>
<td>5ab</td>
</tr>
<tr>
<td>F-A</td>
<td>6.7</td>
<td>5.2⁻</td>
<td>0.28⁻⁰⁶⁺</td>
<td>21.6 ¹</td>
<td>4.4⁺</td>
<td>7.0</td>
<td>6.30</td>
<td>1.85a</td>
<td>10.6b</td>
<td>3bc</td>
</tr>
<tr>
<td>P-L</td>
<td>6.0</td>
<td>5.2⁻</td>
<td>0.28⁻⁰⁶⁻</td>
<td>16.2 ¹</td>
<td>2.0⁺</td>
<td>1.8</td>
<td>11.1</td>
<td>0.08b</td>
<td>74.2a</td>
<td>8b</td>
</tr>
<tr>
<td>P-H</td>
<td>6.0</td>
<td>4.5⁺</td>
<td>0.33⁻⁰⁶⁺⁺⁺⁺</td>
<td>15.8 ¹</td>
<td>5.8⁺</td>
<td>9.9</td>
<td>41.73</td>
<td>0.35ab</td>
<td>396b</td>
<td>7a</td>
</tr>
<tr>
<td>C-F</td>
<td>6.4</td>
<td>2.1⁺</td>
<td>0.17⁻⁰⁶⁺⁺⁺⁺</td>
<td>13.9 ¹</td>
<td>4.6 ¹⁺</td>
<td>0.5</td>
<td>3.88</td>
<td>1.02abc</td>
<td>3.3b</td>
<td>6c</td>
</tr>
<tr>
<td>C-C</td>
<td>6.3</td>
<td>1.4⁺</td>
<td>0.12⁻⁰⁶⁺⁺⁺⁺</td>
<td>13.4 ¹</td>
<td>0.68⁺</td>
<td>23.9</td>
<td>0.92</td>
<td>0.82ab</td>
<td>1.1ab</td>
<td>5b</td>
</tr>
</tbody>
</table>

† Modified from Taylor et al. (2010); Data are mean (SE), and superscripts denote differences based on one-way ANOVA (P < 0.05, Tukey post hoc).

F-F, Douglas-fir forest; F-A, alder forest; P-L, lightly grazed pasture; P-H, heavily grazed pasture; C-F, fallowed cultivated; C-C, cropped cultivated; Nmin, 30 day mineralizable N; Arch, archaeal; Bact, bacterial; na, not available.

not statistically significant. Recovery of NP (RNP) in the presence of bacterial protein synthesis inhibitors after acetylene inactivation varied from 0% to 104%, and was not correlated to the initial NP. Bacterial amoA gene abundance ranged over 20-fold, archael amoA gene abundance ranged almost 50-fold and the archael : bacterial amoA ratio spanned two orders of magnitude. Differences in putative ammonia-oxidizer population sizes between land-use types were driven by bacterial amoA gene abundance \((P = 0.023)\) and archael : bacterial amoA ratio \((P = 0.016)\). Pasture soils had the lowest bacterial amoA gene abundance and highest archael : bacterial amoA ratio, while forest, cultivated and long-term fallowed soils had the lowest archael : bacterial amoA ratio \((Tukey post hoc comparisons, P < 0.05)\).

Despite considerable differences among land-use types in nitrification rates \(NP, RNP\) and bacterial and archael amoA gene abundances, there were no statistically significant relationships between \(NP, RNP\) and either bacterial, archael or bacterial + archael amoA gene abundance or the archael : bacterial amoA ratio. Perhaps this result is to be expected given the limited knowledge of links between environmental amoA gene distribution and ammonia oxidizer activity. For example, it is well known that \textit{in situ} gross rates of nitrification in whole soils range between 10% and 60% of the NP, implying that a variable fraction of soil ammonia oxidizers are NH\(_4^+\) limited, starved or inactive in whole soil situations \(\text{(Norton, 2008)}\). There are a few examples of pure cultures of AOB that, after NH\(_4^+\) starvation for between 1 and 5 weeks, can produce NO\(_2^-\) immediately upon addition of NH\(_4^+\) \(\text{(Johnstone and Jones, 1988; Bollmann \textit{et al.}, 2005; Berube \textit{et al.}, 2007)}\). However, within heterogeneous soil populations of AOB and AOA, the factors controlling recovery of ammonia oxidation after starvation remain unknown.

Archaeal and bacterial amoA gene T-RF clustering among soils

An examination of the relative abundances of soil bacterial and archael amoA gene terminal restriction fragment \(T-RF\) revealed diverse, heterogeneous archael and bacterial amoA gene distributions within and among land-use types \(\text{(Figs 1 and 2)}\). Although there was some overlap in individual \(T-RF\) occurrence, distinct archael amoA gene compositions were found in forest, pasture and cropland \(\text{(including the long-term fallowed)}\) soils \(\text{(Figs 1A and 2A; MRPP post hoc: } P < 0.002, T < -4.5, A > 0.21)\). In contrast, bacterial amoA gene composition was distinct in forest soils \(\text{(Figs 1B and 2B; MRPP post hoc: } P < 0.001, T < -6.0, A > 0.30)\) and in cropped soils \(\text{(MRPP: } P = 0.010, T = -3.4, A = 0.43)\), but was similar in both pasture and long-term fallowed soils \(\text{(} P = 0.131, \text{MRPP: } T = -1.0, A = 0.06)\). These results imply that whereas bacterial amoA gene composition has shifted from that of a cultivated soil to that of a pasture soil since the cessation of active cultivation \(\text{(no N fertilization or tillage)}\), the archael amoA gene composition has not changed significantly.

To identify soil properties and N cycling variables that were related to amoA gene composition, vectors representing the strongest correlations between the NMDS distance matrix and other study metrics were plotted \(\text{(Fig. 1)}\). C : N and N mineralization rate were correlated with both archael and bacterial amoA gene community structure, suggesting a commonality between those factors: in fact, the forest soils drove this relationship, being highest in C : N and N mineralization, and having

Fig. 1. Nonmetric multidimensional scaling ordinations of amoA gene T-RF relative abundance for \(\text{(A) archael and (B) bacterial amoA gene communities. Archael model parameters are stress = 3.182, instability = 0.011; bacterial model parameters are stress = 2.409, instability < 0.001. Site abbreviations are F-F, Douglas-fir forest; F-A, alder forest; P-L, lightly grazed pasture; P-H, heavily grazed pasture; C-F, fallowed cultivated; C-C, cropped cultivated. Significant correlations between community composition and environmental metrics (see Table 1 for abbreviation definitions) are shown by the vector overlay \(\text{(} P < 0.005 \text{ with either axis)}\).**
both unique bacterial and archaeal amoA gene compositions. On the other hand, only the bacterial amoA gene composition was correlated to RNP + kanamycin (the fraction of RNP that is assumed to be attributable to AOA).

Archaeal amoA gene T-RF and sequence composition

Specific archaeal taxa were found to make up large percentages of the T-RF total fluorescence in forest, pasture and cropland soils (Fig. 2A). For example, on average, Rsa570 comprised 85% of the forest soil T-RF total fluorescence, Msp295 and Rsa631 constituted 25% and 33%, respectively, of the pasture soil T-RF fluorescence, and Rsa296 and Rsa200 contributed 47% and 38%, respectively, of the cropland soil T-RF fluorescence. Although vegetation has been suggested to influence soil archaeal community composition via rhizosphere effects (Chen et al., 2008; Bomberg and Timonen, 2009), the archaeal amoA gene composition in forest soils was similar in both Douglas-fir and red alder stands, which comprise different rhizosphere habitats. Additionally, archaeal amoA gene composition from this study showed no taxonomic overlap with the composition of archaeal amoA genes from Douglas-fir and red alder stands located on an acidic (pH 4) andisol about 100 km distant (Boyle-Yarwood et al., 2008). All soils in this study had similar pH; however, they differed a great deal in age, texture, mineralogy and parent material (Parsons et al., 1970; Taylor et al., 2010). Although it is difficult to constrain and identify any one soil physical property as a driver of microbial community composition, soil texture determines pore space distribution and water dynamics, which can affect dispersal patterns and substrate availability for both microbial cells and microbial predators. Given the patterns we observed, it seems that vegetation type per se may be less important than edaphic factors as a driver of differences in archaeal amoA distribution among soils from differing land-use type.

It is notable that although several archaeal amoA gene T-RFs and sequences were detected in the study...
soils, none corresponded with the T-RFLP profile or phylogenetic placement of ‘Candidatus N. maritimus’ (Msp631/Rsa119), ‘Candidatus Nitrososphaera gargensis’ (Msp631/Rsa196) or ‘Candidatus N. viennensis’ (Msp196/Rsa200) (Figs 2A and S1). However, an interesting pattern emerges when comparing the results of this study with others of archaeal amoA gene phylogenetic composition. Unlike any sequences collected in this study, the dominant archaeal amoA sequences identified by Boyle-Yarwood and colleagues (2008) in an acidic forested andisol fell into the same phylogenetic clades (iv and v) that were described in a Scottish agricultural loamy sand soil [Fig. S1; (Nicol et al., 2008)]. In the latter study, archaeal amoA genes from clades iv and v were not only more abundant, but were also expressed to greater levels in acid soil (pH 4.3) than in the same soil that had been limed to maintain pH 6.9 (Nicol et al., 2008). In addition, the dominant archaeal amoA gene phylotype that dominated the pH 6 forest soils of our study, T-RF Rsa570, fell into the same phylogenetic clade (iii) as sequences from the same Scottish agricultural soil (Fig. S1) that were more strongly expressed at pH 6.9 than 4.3 (Nicol et al., 2008). The complimentary results of these three studies clearly suggest that pH is a soil factor affecting the abundance of certain phylotypes of archaeal amoA genes, regardless of soil type, local climate, vegetation or land use.

Bacterial amoA gene T-RF and sequence composition

The long-term fallowed and pasture soils had a bacterial amoA gene composition dominated by one phylotype (T-RF Alu200, 56% and 78%, respectively, of total fluorescence), unlike the forested and cropped soils, which contained a more even distribution of taxa (Fig. 2B). In addition, ordination analysis revealed that the long-term fallowed and pasture soils displayed a greater archaeal contribution to the RNP (RNP + kanamycin; Fig. 1B) than the cropped soils. Therefore, we should consider the possibility of a link between the factors that result in the dominance of T-RF Alu200 in the bacterial amoA gene community and the detection of a significant archaeal contribution to the RNP.

Although we cannot determine how many years without cultivation activity passed before the apparent shift of the bacterial amoA gene composition took place, the long-term fallowed soils had not been tilled, cropped, or N-fertilized for 18 years at the time of sampling. In calcareous grassland soils in the Netherlands, Kowalchuk and colleagues (2000) showed that the AOB community composition shifted noticeably following cessation of N fertilization over time periods ranging between 10 and 24 years. These shifts corresponded with the time needed to see substantial declines in net N mineralization rates, suggesting that the ammonia oxidizers in non-fertilized soils were better adapted to living with lower NH₄⁺ availability. The Alu200 phylotype is related to sequences from Nitrosospira Cluster 3a (Table S1, Fig. S1). Previous work from the UK showed that unimproved, unfertilized pasture soils tend to contain Nitrosospira Cluster 3a, and these soils showed a trend for a significant delay in nitrification response to added N (Webster et al., 2005). Culture-based studies confirmed that growth of representative isolates of Nitrosospira Cluster 3a is inhibited by high NH₄⁺ concentrations (Tourna et al., 2010). Perhaps the dominance of the Alu200 phylotype in pasture and long-term fallowed soils, and the delay of Nitrosospira Group 3a isolates to respond to added NH₄⁺ is somehow linked to the high archaeal contribution to the RNP of these soils. Clearly, further studies are needed to identify the specific factors controlling the relative contributions of archaea and bacteria to nitrification in the long-term fallowed and pasture soils.

The contrasting patterns of soil archaeal and bacterial activity and amoA abundance and distribution suggest that environmental factors that vary at a landscape scale may affect AOA differently than AOB. The concept of niche differentiation among AOB phylotypes has been established for several years, following observations that soil AOB phylotypic composition differs in response to N availability (Bollmann et al., 2002; Avrahami et al., 2003; Tourna et al., 2008), plant community composition (Hawkes et al., 2005) temperature (Avrahami et al., 2003), soil moisture (Avrahami and Bohannan, 2007), oxygen tension (Kowalchuk et al., 1998), ammonia uptake kinetics and/or inhibition (Webster et al., 2005; Tourna et al., 2010). The range of factors that may influence AOB composition reflect the many possible niches that may exist for individual AOB phylotypes. In addition, recent studies suggest that soil AOA communities have different response patterns than co-located AOB to pH and temperature changes (Nicol et al., 2008; Tourna et al., 2008). In this study, there were no significant differences in archaeal amoA abundance or composition between ‘high’ and ‘low’ N situations within any land-use type, suggesting that N supply was less important to AOA distribution than AOB. AOA abundance and diversity have shown no or inconsistent responses to N fertilization in other studies (He et al., 2007; Shen et al., 2008; Di et al., 2009; Hallin et al., 2009; Jia and Conrad, 2009; Schauss et al., 2009; Wang et al., 2009), supporting the hypothesis that landscape-scale factors might mediate and/or dominate the influence of N amendment on soil AOA composition. In contrast, bacterial amoA gene composition was quite different in long-term fallowed soils than in adjacent cultivated and N-fertilized soils, thus N fertilization remains a potential driver of AOB distribution. Most impor-
tantly, our study suggests that differences in distribution patterns of archaeal and bacterial amoA genes may have ramifications for each group’s respective role in soil nitrification across the landscape. Future research should further dissect the role of soil properties and patterns of land use on the distribution and activity of terrestrial nitrifying microbes.

Experimental procedures

Sites and sampling approach

We established a 10 km transect that spans the major landforms in the Willamette Valley, Oregon, USA, and represents the dominant land uses (i.e., vegetation and land management practices) and soil types. Three locations were selected near Corvallis, Oregon, USA (44.7°N 123.3°W), on lands owned and managed by Oregon State University: McDonald Forest (forest = F), Soap Creek Ranch (pasture = P) and Hyslop Farm (cropland = C). At each location, we selected two sites with histories of higher or lower N inputs. Soil chemical and N cycling properties for all soils are reported in two sites with histories of higher or lower N inputs. Soil Forest (forest owned and managed by Oregon State University: McDonald near Corvallis, Oregon, USA (44.7°N 123.3°W), on lands that dominate land uses (i.e., vegetation and land management forms in the Willamette Valley, Oregon, USA, and represents

We established a 10 km transect that spans the major land-use types, ranging from high to low amounts of net mineralizable N along the continuum of forest, pasture and cultivated soils (Table 1). In order to sample soils representing a range of N inputs within each land-use type, we established paired sampling plots at each location. From the forest, we sampled soil in three Douglas-fir stands (F-F) and three adjacent stands of N₂-fixing red alder (F-A). At the pasture, we sampled soil from three lightly grazed, upslope pastures (P-L) and three heavily grazed and manured bottomland pastures (P-H). At the cultivated location, we collected soil from four cropped and fertilized fields (single application of 90–180 kg urea-N ha⁻¹ year⁻¹), two planted in wheat and two planted in barley (cropped sites were combined for statistical analysis, C-C), and two long-term fallow fields that had not been cultivated or fertilized for 18 years (C-F). Thus, for all parameters measured, field replicates were collected and analysed separately [n = 3 except C-C (n = 4) and C-F (n = 2)].

Soils analysed for DNA, total C and N and pH were collected in late July 2008. Soils analysed for NP, RNP and N mineralization (N min) assays were collected in late July 2009. We collected soils from the same plots at the same time of year in order to gather supplemental data on soil properties under similar field conditions. Although summer climate is generally stable at the study sites, temporal heterogeneity may affect variability in the data. At each of the 18 field plots, 4–6 soil cores (2.5 cm diameter by 10 cm depth) were gathered from points across each plot and homogenized for further analysis. Soils were carried back to the lab on ice and immediately sieved (2 mm) and roots removed. Soils were stored at either 4°C (soil properties, NP, RNP) or −20°C (DNA) until analysis.

Soil chemistry and nitrogen cycling parameters

Soil pH was measured using standard methods (Klute, 1994; Sparks, 1994). Total organic C and N were measured on a Leco CNS-2000 Macro Analyzer (St. Joseph, MI, USA). N mineralization (N min) was calculated as the amount of inorganic N (NH₄⁺ + NO₃⁻ + NO₂⁻) extractable in 0.5 M KCl accumulated during a 30 day incubation at 30°C and 60% water holding capacity. NP was measured using a modified shaken soil slurry method (Hart et al., 1994) as the amount of NO₃⁻ formed over a 24 h incubation period (Taylor et al., 2010). To measure RNP, assay slurries were held in an acetylene atmosphere for 6 h to completely inactivate ammonia monooxygenase, degassed and aerated, then incubated similarly to the NP assays for 48 h. Inferred archaeal (non-bacterial) contribution to RNP was assessed by adding kanamycin at the beginning of the recovery phase (Taylor et al., 2010).

Nucleic acid analysis

DNA was extracted from 0.25–0.30 g dry soil using a MoBio PowerSoil (Carlsbad, CA, USA) extraction kit, and quantified using a NanoDrop ND-1000 UV-Vis Spectrophotometer (Wilmington, DE, USA). PCR of the amoA gene was performed in 50 μl reaction volumes using approximately 50 ng of template DNA, 1× PCR buffer (Promega Colorless GoTaq Reaction Buffer, Madison, WI, USA), 0.2 mM dNTPs, 1.2 mM MgCl₂, 0.2 μM each of the bacterial amoA_1F and amoA_2F primers (Rotthauwe et al., 1997; Mintie et al., 2003; Boyle-Yarwood et al., 2008), or the archaeal Arch-amoA-F and Arch-amoA-R primers (Francis et al., 2005; de la Torre et al., 2008). Thermalcycler protocols followed existing programs for archaeal (Francis et al., 2005; Boyle-Yarwood et al., 2008; de la Torre et al., 2008) and bacterial amoA PCR (Mintie et al., 2003).

For T-RFLP assays, 5’ end 6-FAM-labelled forward primers were used to produce PCR products, which were purified using a QiAquick PCR Purification Kit (QIAGEN, Valencia, CA, USA), and restricted with TaqI and Alul for the bacterial amoA gene analysis (Horz et al., 2000; Mintie et al., 2003), and with Rsal and MspI for the archaeal amoA gene analysis (Boyle-Yarwood et al., 2008). The digests were purified and fragment lengths and relative abundances were analysed
using an ABI 3100 capillary sequencer and Genotyper 3.7 (Foster City, CA, USA). Technical replicates were analysed on a subset (33%) of samples to ensure profile reproducibility. For each sample, any fragments comprising < 3% relative abundance of total fluorescence were removed from subsequent analysis. The relative fluorescence abundances of unique terminal restriction fragments (T-RFs) were exported for further analysis.

Cloning and sequencing was performed on both combined archaeal and bacterial PCR products from all samples; i.e. two 96-well plate libraries were constructed, one for each gene. A ligation of each batch of PCR products was produced using the TOPO TA kit (Invitrogen, Carlsbad, CA, USA), and submitted to the Genome Center at Washington University (St Louis, MO, USA). 96 clones per library were sequenced on an ABI 3730 capillary sequencer (Foster City, CA, USA) using both M13F and R primers. Sequences were trimmed and culled to remove all data with a phred value of < 20. Using CodonCode software (Dedham, MA, USA), remaining sequences were aligned and assembled to 2 × coverage and operational taxonomic units (OTUs) for the archaeal and bacterial amoA gene were defined at a sequence identity level of 99%. The highest quality representative sequence of each OTU was exported for phylogenetic analysis.

Q-PCR of the archaeal and bacterial amoA genes was performed using the Brilliant II SYBR Green Master Mix (Stratagene, La Jolla, CA, USA) and an ABI 7500 Real Time PCR System (Foster City, CA, USA). We used ~10 ng template DNA, a 25 μl reaction volume, and published primers and thermalcycler protocols for both bacterial [amoA_1R and amoA_2F primers (Rotthauwe et al., 1997; Mosier and Francis, 2008)] and archaeal [Arch-amoA4F and Arch-amoA4R primers (Francis et al., 2005; Mosier and Francis, 2008)]. Standard curves were constructed with 2.0 × 10^1 to 2.0 × 10^4 ng Nitrosomonas europaea genomic DNA (bacterial amoA, efficiency = 91–94%, R² = 0.996) or 1.25 × 10^1 to 1.25 × 10^5 ng of a TOPO plasmid containing a Nitrosopumilis maritimus amoBAC gene insert (archaeal amoA, efficiency = 95–100%, R² = 0.994-0.995). Each reaction was run in triplicate, and replicates were analysed for a subset (33%) of samples to ensure quantitative accuracy. AmoA gene abundances were standardized by the mass of DNA recovered per g dry soil and log_{10} transformed before statistical analysis.

Statistical analysis

To test for differences in quantitative variables (soil characteristics, N min, NP, RNP, T-RF richness, archaeal and bacterial amoA gene abundances) between land-use type, we used ANOVA with Tukey’s post hoc analysis. Ordinations of community composition were constructed based on the relative abundance of T-RFs at all sites: nonmetric multidimensional scaling (NMS) scores were calculated from Sørenson’s distance, a robust distance measure for datasets with many null values (Legendre and Gallagher, 2001). Highly significant correlations between NMS scores and edaphic properties or N cycling parameters (P < 0.005 with either axis) were graphed using vectors overlaid on each NMS plot. Multiple response permutation procedure (MRPP) was used to test for treatment differences (land use, N input) in community composition. All ANOVA and correlation analyses were performed using SPSS 11 for Mac, and all multivariate analyses (NMS, MRPP) were performed using PC-ORD (McCune and Meford, 1999).

The archaeal and bacterial amoA gene clone library sequence data were compared with the known sequences in the NCBI library and analysed phylogenetically to determine their taxonomic affiliations. The representative sequence from each OTU was compared with the NCBI nr/nt database using BLAST, and the GenBank number and percent sequence similarity of the closest match was recorded. A phylogenetic analysis was performed on all representative sequences from this study plus selected sequences from known isolates and environmental clones using ARB (Ludwig et al., 2004) and PAUP 4.0 (Swofford, 2003). Phylogenetic trees were built using the neighbour-joining algorithm in ARB, and confirmed by PAUP with the general time-reversible model of nucleotide evolution as recommended by ModelTest (Posada and Crandall, 1998). Trees were bootstrapped in PAUP by resampling 1000 times using stepwise addition and tree bisection replacement. Finally, all sequences included in the phylogenetic analysis were restricted in silico with the same enzymes used for T-RFLP analysis of soil amplicons using CodonCode, and these results were used to designate phyla represented by the T-RFs. Sequences are stored in GenBank with accession numbers HM113498-HM113519.

Acknowledgements

This research was funded by USDA CSREES 2007–35107-1835. Thanks to Alex Krupkin, Rockie Yarwood, Stephanie Yarwood, Laurel Kluber and Shawn Starkenburg for lab assistance and/or advice. Soil physical and chemical properties were analysed at the Central Analytical Laboratory, Oregon State University. The Center for Genome Research and Biocomputing at Oregon State University provided T-RFLP analysis and Q-PCR instrumentation.

References

Supporting information

Additional Supporting Information may be found in the online version of this article:

Fig. S1. Neighbour-joining phylogenetic tree of Thaumarchaeota amoA gene sequences from this study (99% OTU representatives marked in bold, number represents that OTU’s abundance in the clone library), cultured isolates and other environmental sequences. In silico determinations of T-RFs for all sequences are noted to the right of the phylogram. T-RFs that represent monophyletic taxonomic groups are highlighted in bold/italic type, and the corresponding clade is marked with a unique symbol.

Fig. S2. Neighbour-joining phylogenetic tree of bacterial amoA gene sequences from this study (99% OTU representatives marked in bold, number represents that OTU’s abundance in the clone library), characterized Nitrosospira sp. isolates and other environmental sequences. In silico determinations of T-RFs for all sequences are noted to the right of the phylogram. T-RFs that represent monophyletic taxonomic groups are highlighted in bold/italic type, and the corresponding clade is marked with a unique symbol.
Table S1. Archaeal and bacterial amoA gene clone library sequence information. AOB taxonomic identity based on a sequence grouping in a clade with known isolates (Fig. S2); cluster designation based on Purkhold and colleagues (2000).

Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.