Title | Sensitive quantification of sulfur compounds in wine by headspace solid-phase microextraction technique. |
Publication Type | Journal Article |
Year of Publication | 2005 |
Authors | Fang, Y, Qian, MC |
Journal | J Chromatogr A |
Volume | 1080 |
Issue | 2 |
Pagination | 177-85 |
Date Published | 07/2008 |
ISSN | 0021-9673 |
Abstract | A sensitive solid-phase microextraction and gas chromatography-pulsed flame photometric detection technique was developed to quantify volatile sulfur compounds in wine. Eleven sulfur compounds, including hydrogen sulfide, methanethiol, ethanethiol, dimethyl sulfide, diethyl sulfide, methyl thioacetate, dimethyl disulfide, ethyl thioacetate, diethyl disulfide, dimethyl trisulfide and methionol, can be quantified simultaneously by employing three internal standards. Calibration curves were established in a synthetic wine, and linear correlation coefficients (R2) were greater than 0.99 for all target compounds. The quantification limits for most volatile sulfur compounds were 0.5 ppb or lower, except for methionol which had a detection limit of 60 ppb. The recovery was studied in synthetic wine as well as Pinot noir, Cabernet Sauvignon, Pinot Grigio, and Chardonnay wines. Although the sulfur compounds behaved differently depending on the wine matrix, recoveries of greater than 80% were achieved for all sulfur compounds. This technique was applied to analyze volatile sulfur compounds in several commercial wine samples; methionol concentrations were found at the ppm level, while the concentrations for hydrogen sulfide, methanethiol, and methyl thioacetate were at ppb levels. Only trace amounts of disulfides and trisulfides were detected, and ethanethiol was not detected. |
PubMed ID | 16008056 |