Biblio

Found 26 results
Author Title [ Type(Desc)] Year
Filters: Keyword is Saccharomyces cerevisiae  [Clear All Filters]
Journal Article
J. Ding, Bierma, J., Smith, M. R., Poliner, E., Wolfe, C., Hadduck, A. N., Zara, S., Jirikovic, M., van Zee, K., Penner, M. H., Patton-Vogt, J., and Bakalinsky, A. T., Acetic acid inhibits nutrient uptake in Saccharomyces cerevisiae: auxotrophy confounds the use of yeast deletion libraries for strain improvement., Appl Microbiol Biotechnol, vol. 97, no. 16, pp. 7405-16, 2013.
G. Winter, Hazan, R., Bakalinsky, A. T., and Abeliovich, H., Caffeine induces macroautophagy and confers a cytocidal effect on food spoilage yeast in combination with benzoic acid., Autophagy, vol. 4, no. 1, pp. 28-36, 2008.
S. Vincenzi, Bierma, J., Wickramasekara, S. I., Curioni, A., Gazzola, D., and Bakalinsky, A. T., Characterization of a grape class IV chitinase., J Agric Food Chem, vol. 62, no. 24, pp. 5660-8, 2014.
J. P. Osborne, A Morneau, D., and R de Orduña, M., Degradation of free and sulfur-dioxide-bound acetaldehyde by malolactic lactic acid bacteria in white wine., J Appl Microbiol, vol. 101, no. 2, pp. 474-9, 2006.
T. E. Young, Ling, J., Geisler-Lee, C. J., Tanguay, R. L., Caldwell, C., and Gallie, D. R., Developmental and thermal regulation of the maize heat shock protein, HSP101., Plant Physiol, vol. 127, no. 3, pp. 777-91, 2001.
A. N. Hadduck, Hindagolla, V., Contreras, A. E., Li, Q., and Bakalinsky, A. T., Does aqueous fullerene inhibit the growth of Saccharomyces cerevisiae or Escherichia coli?, Appl Environ Microbiol, vol. 76, no. 24, pp. 8239-42, 2010.
W. Hohenschuh, Hector, R., and Murthy, G. S., A dynamic flux balance model and bottleneck identification of glucose, xylose, xylulose co-fermentation in Saccharomyces cerevisiae., Bioresour Technol, vol. 188, pp. 153-60, 2015.
S. Holt, Cordente, A. G., Williams, S. J., Capone, D. L., Jitjaroen, W., Menz, I. R., Curtin, C. D., and Anderson, P. A., Engineering Saccharomyces cerevisiae to release 3-Mercaptohexan-1-ol during fermentation through overexpression of an S. cerevisiae Gene, STR3, for improvement of wine aroma., Appl Environ Microbiol, vol. 77, no. 11, pp. 3626-32, 2011.
Y. - C. Chung, Bakalinsky, A. T., and Penner, M. H., Enzymatic saccharification and fermentation of xylose-optimized dilute acid-treated lignocellulosics., Appl Biochem Biotechnol, vol. 121-124, pp. 947-61, 2005.
S. Zara, Gross, M. K., Zara, G., Budroni, M., and Bakalinsky, A. T., Ethanol-independent biofilm formation by a flor wine yeast strain of Saccharomyces cerevisiae., Appl Environ Microbiol, vol. 76, no. 12, pp. 4089-91, 2010.
A. G. Cordente, Curtin, C. D., Varela, C., and Pretorius, I. S., Flavour-active wine yeasts., Appl Microbiol Biotechnol, vol. 96, no. 3, pp. 601-18, 2012.
S. Zara, Bakalinsky, A. T., Zara, G., Pirino, G., Demontis, M. Antonietta, and Budroni, M., FLO11-based model for air-liquid interfacial biofilm formation by Saccharomyces cerevisiae., Appl Environ Microbiol, vol. 71, no. 6, pp. 2934-9, 2005.
G. Winter, Cordente, A. G., and Curtin, C. D., Formation of hydrogen sulfide from cysteine in Saccharomyces cerevisiae BY4742: genome wide screen reveals a central role of the vacuole., PLoS One, vol. 9, no. 12, p. e113869, 2014.
S. Zara, G Farris, A., Budroni, M., and Bakalinsky, A. T., HSP12 is essential for biofilm formation by a Sardinian wine strain of S. cerevisiae., Yeast, vol. 19, no. 3, pp. 269-76, 2002.
M. R. Smith, Boenzli, M. G., Hindagolla, V., Ding, J., Miller, J. M., Hutchison, J. E., Greenwood, J. A., Abeliovich, H., and Bakalinsky, A. T., Identification of gold nanoparticle-resistant mutants of Saccharomyces cerevisiae suggests a role for respiratory metabolism in mediating toxicity., Appl Environ Microbiol, vol. 79, no. 2, pp. 728-33, 2013.
O. Martin, Brandriss, M. C., Schneider, G., and Bakalinsky, A. T., Improved anaerobic use of arginine by Saccharomyces cerevisiae., Appl Environ Microbiol, vol. 69, no. 3, pp. 1623-8, 2003.
G. Winter and Curtin, C. D., In situ high throughput method for H(2)S detection during micro-scale wine fermentation., J Microbiol Methods, vol. 91, no. 1, pp. 165-70, 2012.
J. P. Osborne and Edwards, C. G., Inhibition of malolactic fermentation by a peptide produced by Saccharomyces cerevisiae during alcoholic fermentation., Int J Food Microbiol, vol. 118, no. 1, pp. 27-34, 2007.
A. R. Borneman, Zeppel, R., Chambers, P. J., and Curtin, C. D., Insights into the Dekkera bruxellensis genomic landscape: comparative genomics reveals variations in ploidy and nutrient utilisation potential amongst wine isolates., PLoS Genet, vol. 10, no. 2, p. e1004161, 2014.
A. G. Cordente, Cordero-Bueso, G., Pretorius, I. S., and Curtin, C. D., Novel wine yeast with mutations in YAP1 that produce less acetic acid during fermentation., FEMS Yeast Res, vol. 13, no. 1, pp. 62-73, 2013.
J. Ding, Holzwarth, G., Penner, M. H., Patton-Vogt, J., and Bakalinsky, A. T., Overexpression of acetyl-CoA synthetase in Saccharomyces cerevisiae increases acetic acid tolerance., FEMS Microbiol Lett, vol. 362, no. 3, pp. 1-7, 2015.
J. Ding, Holzwarth, G., C Bradford, S., Cooley, B., Yoshinaga, A. S., Patton-Vogt, J., Abeliovich, H., Penner, M. H., and Bakalinsky, A. T., PEP3 overexpression shortens lag phase but does not alter growth rate in Saccharomyces cerevisiae exposed to acetic acid stress., Appl Microbiol Biotechnol, vol. 99, no. 20, pp. 8667-80, 2015.
G. S. Murthy, Johnston, D. B., Rausch, K. D., Tumbleson, M. E., and Singh, V., A simultaneous saccharification and fermentation model for dynamic growth environments., Bioprocess Biosyst Eng, vol. 35, no. 4, pp. 519-34, 2012.
J. D. Rowe, Harbertson, J. F., Osborne, J. P., Freitag, M., Lim, J., and Bakalinsky, A. T., Systematic identification of yeast proteins extracted into model wine during aging on the yeast lees., J Agric Food Chem, vol. 58, no. 4, pp. 2337-46, 2010.
A. G. Cordente, Capone, D. L., and Curtin, C. D., Unravelling glutathione conjugate catabolism in Saccharomyces cerevisiae: the role of glutathione/dipeptide transporters and vacuolar function in the release of volatile sulfur compounds 3-mercaptohexan-1-ol and 4-mercapto-4-methylpentan-2-one., Appl Microbiol Biotechnol, vol. 99, no. 22, pp. 9709-22, 2015.