Biblio
Found 30 results
Author [ Title] Type Year Filters: Keyword is Cattle and Author is Massimo Bionaz [Clear All Filters]
“TRIENNIAL LACTATION SYMPOSIUM: Nutrigenomics in dairy cows: Nutrients, transcription factors, and techniques.”, J Anim Sci, vol. 93, no. 12, pp. 5531-53, 2015.
, “Systems physiology in dairy cattle: nutritional genomics and beyond.”, Annu Rev Anim Biosci, vol. 1, pp. 365-92, 2013.
, “Reducing milking frequency during nutrient restriction has no effect on the hepatic transcriptome of lactating dairy cattle.”, Physiol Genomics, vol. 45, no. 23, pp. 1157-67, 2013.
, “Plasmid transfection in bovine cells: Optimization using a realtime monitoring of green fluorescent protein and effect on gene reporter assay.”, Gene, vol. 626, pp. 200-208, 2017.
, “Plasma paraoxonase, health, inflammatory conditions, and liver function in transition dairy cows.”, J Dairy Sci, vol. 90, no. 4, pp. 1740-50, 2007.
, “Peroxisome proliferator-activated receptor-gamma activation and long-chain fatty acids alter lipogenic gene networks in bovine mammary epithelial cells to various extents.”, J Dairy Sci, vol. 92, no. 9, pp. 4276-89, 2009.
, “Old and new stories: revelations from functional analysis of the bovine mammary transcriptome during the lactation cycle.”, PLoS One, vol. 7, no. 3, p. e33268, 2012.
, “Nutrition-induced ketosis alters metabolic and signaling gene networks in liver of periparturient dairy cows.”, Physiol Genomics, vol. 32, no. 1, pp. 105-16, 2007.
, “A novel dynamic impact approach (DIA) for functional analysis of time-course omics studies: validation using the bovine mammary transcriptome.”, PLoS One, vol. 7, no. 3, p. e32455, 2012.
, “Long-chain fatty acid effects on peroxisome proliferator-activated receptor-alpha-regulated genes in Madin-Darby bovine kidney cells: optimization of culture conditions using palmitate.”, J Dairy Sci, vol. 92, no. 5, pp. 2027-37, 2009.
, “Integrative analyses of hepatic differentially expressed genes and blood biomarkers during the peripartal period between dairy cows overfed or restricted-fed energy prepartum.”, PLoS One, vol. 9, no. 6, p. e99757, 2014.
, “Identification of reference genes for quantitative real-time PCR in the bovine mammary gland during the lactation cycle.”, Physiol Genomics, vol. 29, no. 3, pp. 312-9, 2007.
, “Identification of internal control genes for quantitative polymerase chain reaction in mammary tissue of lactating cows receiving lipid supplements.”, J Dairy Sci, vol. 92, no. 5, pp. 2007-19, 2009.
, “Gene networks driving bovine milk fat synthesis during the lactation cycle.”, BMC Genomics, vol. 9, p. 366, 2008.
, , , “Functional and gene network analyses of transcriptional signatures characterizing pre-weaned bovine mammary parenchyma or fat pad uncovered novel inter-tissue signaling networks during development.”, BMC Genomics, vol. 11, p. 331, 2010.
, “Functional adaptations of the transcriptome to mastitis-causing pathogens: the mammary gland and beyond.”, J Mammary Gland Biol Neoplasia, vol. 16, no. 4, pp. 305-22, 2011.
, , , “Evaluation of Suitable Internal Control Genes for RT-qPCR in Yak Mammary Tissue during the Lactation Cycle.”, PLoS One, vol. 11, no. 1, p. e0147705, 2016.
, “Effects of the peroxisome proliferator-activated receptor-alpha agonists clofibrate and fish oil on hepatic fatty acid metabolism in weaned dairy calves.”, J Dairy Sci, vol. 93, no. 6, pp. 2404-18, 2010.
, “Effects of inflammatory conditions on liver activity in puerperium period and consequences for performance in dairy cows.”, J Dairy Sci, vol. 91, no. 9, pp. 3300-10, 2008.
, “Diets during far-off and close-up dry periods affect periparturient metabolism and lactation in multiparous cows.”, J Dairy Sci, vol. 89, no. 9, pp. 3563-77, 2006.
, “Characterization of Madin-Darby bovine kidney cell line for peroxisome proliferator-activated receptors: temporal response and sensitivity to fatty acids.”, J Dairy Sci, vol. 91, no. 7, pp. 2808-13, 2008.
,