IDENTIFYING WESTERN OREGON CROPS BY SATELLITE IMAGERY IN THE ABSENCE CURRENT YEAR GROUND-TRUTH DATA

G.W. Mueller-Warrant, G.W. Whittaker, G.M. Banowetz, S.M. Griffith, and B.L. Barnhart

Introduction

Few can argue the urgency of improving the sustainability of modern agricultural production. Controversy abounds, however, on the subject of how to best try to achieve sustainability due to a wide variety of factors, including both differences in perspective among individual protagonists in the discussions and complexity of the processes that must ultimately define the long-term limits to humankind's ability to provision itself with adequate food, fiber, and other natural resources. Perhaps the most important question that should be asked in the search for agricultural sustainability is simply how robust/stable our current production systems truly are. Central to any attempts to begin to answer such questions is detailed knowledge of which crops are currently being grown, what inputs they receive/require, and what offsite impacts occur in their production. Successful acquisition of such information for the present and recent past would allow us to measure the slope/change and the acceleration (change in change) of factors ranging from economic viability to water quality to availability of high quality wildlife habitat. Unfortunately, such information is seldom collected for minor crops and only partially tracked even for major ones such as wheat, corn, and soybeans. A useful step forward in evaluating the sustainability of western Oregon crop production systems would be development of a detailed historical record of which crops have been grown at what locations over a period of several decades. Combining this information with models such as the Soil Water Assessment Tool (SWAT) and data such as synoptic water quality samples, wildlife diversity/abundance surveys, and USDA Census of Agriculture summary production statistics should help elevate the discussion of agricultural sustainability to more of an outcome-based approach and less of a debate of lofty principles and general philosophies, i.e., organic versus conventional agriculture, prohibition versus embracing of GMOs, locally grown food versus lowest-cost-no-matter-where production, etc.

Methods

Starting with the 2004-05 growing season, we systematically collected information on crops produced on several thousand western Oregon fields visible from public roads in a series of fall and spring drive-by surveys, including annual and perennial agricultural and horticultural crops, stand establishment status, planting methods, and postharvest residue management of grass seed crops. Information for the first three harvest years has already been used as ground-truth data for successful remote sensing classification of Landsat and MODIS satellite imagery for 16 major agricultural crops in western Oregon. We have now elaborated on these methods to cover seven years and 57 landuses, including 19 classes of annually disturbed agriculture, 20 classes of perennial crops, 13 classes of forests and other natural landscape components, and five categories of urban development (Tables 1a, 1b, 1c). Data from the National Land Cover Dataset were used to define most of the forest and urban development landuse classes, though we also directly identified several such classes in our driveby surveys.

Results and Discussion

The four broad categories of landuse (annual agriculture, perennial agriculture, forest, urban) were separated from each other at 97 to 98% overall accuracy, with most of the 2 to 3% error involving misclassification of some of the perennial agriculture classes. Not unexpectedly, forests were the most reliably identified landuse. The 39 classes of annual or perennial agriculture defined by our ground-truth data represented 99% of all field area surveyed. While the results satisfied our goal of being able to accurately define nearly all landuse across western Oregon, they can really only cover the time period of our ground-truth, drive-by survey, i.e., the 2004-05 cropping year on up until whenever we decide to quit expending the labor needed to conduct the survey for yet another year. The lack of ground-truth data prior to the 2005 harvest year along with the potential future termination of the survey led us to

question whether it might be possible to extend our remote sensing classification results backward or forward in time through creation of synthetic ground-truth data from the period for which we have conducted drive-by surveys and successfully classified landuse in western Oregon. To test this idea, we first conducted a series of remote sensing classifications in which the ground-truth data actually came either from the year prior to or the year following the satellite images and production of the crops we wished to classify. Because we had already conducted a normal remote sensing classification using actual current-year ground-truth data, we were able to test the validity of our shiftyear results against several alternatives. For annual crops such as Italian ryegrass, the shift-year method should work well since the vast majority of Italian ryegrass crops are actually grown year-after-year on the very same fields. The other extreme would be fields of fall- or spring-planted new grass seed stands, which would generally transition into a status of established perennial grass seed crops by the following year and only rarely represent a second year's replanting when the first year's planting had failed to establish.

Using subsequent-year ground-truth data to classify the previous year's landuse was about as successful as normal, same-year classification methods in two out of six cases (2006 and 2009 harvest years), moderately successful in one other case (2011 harvest year), and less successful in the remaining three cases (Table 2). Using prior-year ground-truth data to classify the subsequent year's landuse was more successful than normal, same-year classification in two out of six cases (2006 and 2008 harvest years), about as successful in three cases (2007, 2010, and 2011 harvest years), and less successful in the final case (Table 3). The most successful use of subsequent year ground-truth data to classify prior year landuse occurred for the combination of 2009 harvest year images with 2010 ground-truth. This classification had an overall accuracy of 93.4% relative to pixels where both the original (normal method) classification and the shiftyear ground-truth data matched. This accuracy was achieved despite omission of 10 entire classes, four of which were also absent from the normal sameyear classification. Accuracy of this shift-year classification was 96.5% when measured relative to

the four large groups (annual agriculture, perennial agriculture, forests, urban development). All six of the additional landuse classes lost during shift-year classification were annually disturbed crops grown on relatively few fields.

For the five cases in which subsequent and previous year ground-truth methods can be directly compared, subsequent year ground-truth produced more accurate classifications in two cases while previous year ground-truth produced more accurate classifications in three cases (Tables 2 and 3). Based on our fairly successful results of using shift-year ground-truth data to classify individual images for years in which we also had current year ground-truth data, we conducted a full series of classifications over all available images for the 2003-2004 cropping year, one for which we did not have comprehensive ground-truth data. Our first step was to create a synthetic ground-truth dataset from the classified rasters of the following seven years. The method we chose to create the synthetic ground-truth data started with selection of all pixels that had been identically classified in all seven years, a method which gave us an adequately sized sample for 19 of the 57 desired classes. We then added five more classes from pixels that had been identical over the first 5 growing seasons of our ground-truth survey. The next groups of 11 and 5 classes came from pixels that were identical for the first three or two years of the survey, respectively. We obtained six more classes based solely on the 2004-05 cropping year. This left 11 classes that could not be added to the synthetic ground-truth data because they either were entirely absent from the original 2004-05 cropping year classification or were present at too small a number to provide satisfactory training sets. Our general cut-off was to view 1000 pixels as the minimum number required to include a given category in remote sensing classifications. This 46class synthetic ground-truth data combined with 66 remote sensing image bands to produce training and test validation 57-category accuracies of 87.6 and 93.5% for the 2003-04 cropping year, better than that achieved in any of the normal, same year classifications. The 11 classes of annually disturbed agriculture missing from our 2003-04 cropping year remote sensing classification using synthetic groundtruth data were replaced by increases in area classified in three of the remaining annual crops: (1)

bare ground in the fall not otherwise classified as a specific crop, (2) fallow, and (3) *Brassicaceae* seed crops. Before unambiguously declaring success for our shift-year classification procedure using synthetic ground-truth data from subsequent years, we still need to validate our results using other

resources such as county-wide crop production estimates. However, these initial results give us reason to believe that we will be able to eventually define where most of the crops grown in the past 20 to 30 years in western Oregon have been grown.

Table 1a. Landuse category descriptions for 19 classes of annually disturbed agriculture along with corresponding areas of remotely sensed classifications in each of eight cropping years.

No.	Description	2003-	2004-	2005-	2006-	2007-	2008-	2009-	2010-	7-year
		2004†	2005	2006	2007	2008	2009	2010	2011	mean§
40.1						(mile ²)				
19 cla	asses annually									
	Dars ground in fall									
1	not any other class	415	241	234	219	317	3	78	86	168
2	Full straw Italian	.120		201		517	5	70		100
-	ryegrass	14	73	65	86	52	18	112	31	63
3	Spring-plant new									
	grass seed stands	NA‡	45	36	40	43	57	12	2	34
12	Fall-plant Italian									
	ryegrass	191	116	146	147	156	354	208	273	200
13	Fall-plant perennial							-		
	ryegrass	80	/5	58	83	49	3	4	3	39
14	Fall-plant tall	ΝΙΑ	2212	7	0	6	0	0	0	210
15	Fall plant clover		2215	7	0	17	0		0	519
15	Fail-plain clover	NA 10	3	23	14	17	9	5	2	10
16	Wheat and oats	19	189	46	56	152	436	261	325	209
17	Meadowfoam	2	3	9	9	3	2	7	6	5
27	Corn and		0	N1.0	N 1 A	0	N1.0		0	1
20	sudangrass	NA	0	NA	NA	0	NA	NA	8	1
30	Fallow	212	49	40	32	47	0	21	9	28
35	Beans	NA	1	20	162	5	NA	6	0	28
36	Flowers	NA	1	2	2	1	0	0	0	1
40	Other fall-plant/no-									
	till grass seed crops	NA	2	2	2	1	2	6	1	2
41	Spring-plant peas									
	or other unidentified	NΔ	NΔ	46	22	2	10	4	З	12
12	New planting hops	INA.	NA.		22	2	10		5	12
72	filberts, blueberries	NA	238	0	0	0	0	1	0	34
43	New planting									
	alfalfa or vetch	NA	1	0	2	1	0	1	7	2
44	Volunteer Italian		-			_		-		_
	ryegrass as pasture	NA	2	11	28	0	NA	0	11	7
55	Brassicaceae	292	23	14	6	0	0	3	4	7
Group totals		1225	3275	761	919	852	894	729	771	1171

[†]Classification based on synthetic ground-truth data developed from most common landuse classes over the next 7 years.

‡ NA denotes classes with no members in a given year's remote sensing classification. Values of 0 simply denote classes with total areas of greater than 0 and less than 0.5 square miles.

Means cover 2005, 2006, 2007, 2008, 2009, 2010, and 2011 harvest years, the period over which full ground-truth data existed.

Table 1b. Landuse category descriptions for 20 classes of established perennial agriculture along with corresponding areas of remotely sensed classifications in each of eight cropping years.

No.	Description	2003-	2004-	2005-	2006-	2007-	2008-	2009-	2010-	7-year
		2004	2005	2006	2007	2008	2009	2010	2011	mean
						(mile ²)				
20 cla	asses established									
perei	nnial agriculture									
4	Established	12	4.40	4.67	407	450		70	01	440
	perennial ryegrass	12	149	167	137	152	41	/8	91	116
5	Established	27	25	20	47	27	гo	26	20	25
	orchardgrass	27	25	39	47	27	53	26	28	35
6	Established tall	0.2	00	100	215	220	1 - 4	124	117	150
	fescue	83	96	183	215	220	154	124	112	158
1	Pasture	608	422	415	340	856	854	880	1185	707
8	Established clover	53	14	11	25	17	33	35	11	21
9	Established mint	10	13	14	3	1	1	3	2	5
10	Haycrop	303	312	261	235	129	63	58	51	158
18	Established									
	bentgrass	53	50	17	26	8	0	0	0	15
19	Established fine									
	fescue	73	55	47	148	67	31	95	41	69
21	Wildrice lagoons	0	0	0	0	1	3	22	18	6
22	Wetland									
	restoration	0	0	0	0	3	4	27	3	5
23	Established alfalfa	20	3	6	0	0	NA	5	5	3
24	Established									
	blueberries	3	0	2	1	2	0	0	3	1
25	Filbert orchards	85	17	81	38	88	73	234	118	93
26	Caneberry	149	26	36	25	39	0	3	1	19
28	Nursery crops	1	91	164	117	125	1	3	2	72
29	Apple and cherry									
	orchards	27	10	27	12	25	1	58	33	24
32	Vineyards	47	283	112	81	61	12	41	53	92
38	Hops	2	10	17	7	5	7	23	29	14
56	Strawberry	1	0	0	0	0	0	0	1	0
Group totals		1557	1576	1598	1457	1826	1332	1714	1788	1613

Table 1c. Landuse category descriptions for 13 classes of forests and other natural landscapes and 5 classes of urban development, along with corresponding areas of remotely sensed classifications in each of eight cropping years.

No.	Description	2003-	2004-	2005-	2006-	2007-	2008-	2009-	2010-	7-year
		2004	2005	2006	2007	2008	2009	2010	2011	mean
10.1	0 / / /1					(mile ²)				
13 cla	asses forests/other									
<u>11</u>	Poplars									
11	Popiars	2	0	11	2	1	0	2	0	2
20	Christmas tree		-						-	
_	plantations	364	1669	681	506	818	14	661	258	658
33	Reforestation									
	projects	165	3	3056	1840	1807	0	27	20	965
34	Assorted other									
	lowland forest	1957	851	946	749	479	0	0	4	433
37	Oaks	1	0	22	21	27	42	279	214	86
39	Shrubs and wildlife		_	. –	. –		-		-	_
	refuges	2	1	1/	15	8	0	1	0	6
45	NLCD 11 open water	36	31	49	44	33	64	83	83	55
46	NLCD 90 woody wetlands	73	61	97	66	85	242	125	147	117
47	NLCD 95									
	herbaceous									
	wetlands	10	10	13	14	11	70	85	63	38
51	NLCD 41	441	870	309	497	356	108	148	173	351
	deciduous forest									
52	NLCD 43	2204	F07	652	2105	1070	1740	2720	2002	1000
52	evergreen forest	2204	587	055	2185	1070	1743	2739	2803	1092
22	forest	251	136	676	378	1217	2611	271	27/	795
54	NI CD 53	251	150	070	570	1217	2011	271	274	755
54	scrub/shrub	512	37	58	154	195	914	1639	1789	684
Grou	p totals									
	L	6020	4257	6588	6470	6107	5809	6059	5888	5883
5 clas	sses urban									
devel	opment									
31	Mixed grass and	270	124	0.4	105	4 4 4	0	0	0	60
40	buildings	276	134	84	125	144	0	0	U	69
48	Developed open	20	4	-	220	00	055	24.6	227	262
40	space (NLC 21)	23	4	5	228	90	855	316	337	262
49	Developed low	256	256	115	150	274	120	106	641	206
50	Developed medium	550	230	413	133	5/4	425	450	041	350
50	intensity (NLC 23)	244	214	260	317	273	374	378	250	295
57	Developed high	68	55	5.2	QE	103	76	76	۵ı	<u>80</u>
Grou	n totals	00	663	272	025	103	172/	1262	1277	1102
Total	s for all 57 classes	0770	003	025	0770	0770	1/34	0770	1322	0770
Totals for all 57 classes		9//0	9//0	9//0	9//0	9//0	9//0	9//0	9//0	9//0

Table 2. Classification accuracies, kappa statistics, and omitted classes when subsequent year ground-truth was used on the best set of previous year image bands. Shift year accuracy was measured relative to all classified pixels for subsequent year rather than training/validation sets.

Ground- truth source cropping	Image raster properties		Number missing classes and identification of the omitted classes	Normal same year training set best single- run results		Shift year classification tested with original classified rasters matching in both years	
year	Cropping	Bands	from the original	Accuracy	Kappa	Accuracy	Kappa
	year	present	57 categories				
		(No.)		(%)	(Fraction)	(%)	(Fraction)
2005-2006	2004-2005	62	6 (# 21, 27, 40-43)	52.4	0.505	39.6	0.371
2006-2007	2005-2006	42	3 (# 27, 40, 42)	57.9	0.560	89.3	0.876
2007-2008	2006-2007	68	18 (# 20-23, 33,	66.4	0.640	48.4	0.437
			35-38, 40-42, 44-				
			45, 47, 54-56)				
2008-2009	2007-2008	58	10 (# 14, 23, 27,	69.1	0.675	49.5	0.463
			30, 34, 35, 40, 42-				
			44)				
2009-2010	2008-2009	52	10 (# 14, 23, 27,	72.4	0.707	93.4	0.924
			30, 35, 41-44, 55)				
2010-2011	2009-2010	47	22 (# 3, 5, 11, 13-	76.5	0.752	69.5	0.663
			15, 18-20, 27, 28,				
			31, 35, 36, 39-44,				
			47, 55)				
NA†	2010-2011 44 NA		NA	80.2	0.788	NA	NA

†NA indicates that shift year classification was not run due to the absence of subsequent year ground-truth data.

Table 3. Classification accuracies, kappa statistics, and omitted classes when previous year ground-truth was used on the best set of subsequent year image bands. Shift year accuracy was measured relative to all classified pixels for previous year rather than training/validation sets.

Ground-	- Image raster		Number missing	Normal same year		Shift year classification	
truth	properties		classes and	training set best single-		tested with original	
source	source		identification of	run results		classified rasters matching	
cropping			the omitted classes			in both years	
year	Cropping	Bands	from the original	Accuracy Kappa		Accuracy	Kappa
	year	present	57 categories	7 11		_	
		(No.)		(%)	(Fraction)	(%)	(Fraction)
2004-2005	2005-2006	42	2 (# 41, 42)	57.9	0.560	72.3	0.700
2005-2006	2006-2007	68	10 (# 22, 23, 27,	66.4	0.640	59.8	0.570
			29, 36, 38, 42, 46,				
			47, 56)				
2006-2007	2007-2008	58	0	69.1	0.675	88.1	0.867
2007-2008	2008-2009	52	0	72.4	0.707	46.3	0.431
2008-2009	2009-2010	47	5 (# 23, 27, 35, 44,	76.5	0.752	82.8	0.806
			47)				
2009-2010	2010-2011	44	3 (# 27, 28, 36)	80.2	0.788	80.5	0.780